# The significance of poles and zeros

16 May 2012 | Dr. Kevin C Craig**Share this page with your friends**

In mathematical language, the transfer function between the steer torque applied to the handlebars and the straight-line-path deviation has a right-half-plane zero, which imposes a limit on maneuverability. The path deviation has an inverse-response behavior; that is, in response to a positive step-torque input you apply to the handlebars, the path deviation is initially positive and then becomes negative. This effect has contributed to numerous motorcycle accidents, but countersteering could prevent these accidents.

To better understand the physical significance of the poles and zeros of a transfer function, consider a simpler system, comprising two rigid links and a torsional spring (see Figure 1). Assume small displacements. The equations of motion are in matrix form, along with two transfer functions, G0(s) and G1(s).

A pole of a transfer function is a value of s that makes the denominator equal to zero, and a zero of a transfer function is a value of s that makes the numerator equal to zero. Systems that have no poles or zeros in the right half of the complex plane are minimum-phase systems because either of the two components of the frequency response, gain and phase, contains all the frequency-response information that exists. This phenomenon, Bode�s gain-phase relationship, stipulates that systems that have poles in the right half of the plane are unstable. A nonminimum-phase stable system is one that has a zero in the right half of the plane. Physical phenomena that give rise to nonminimum-phase stable behavior include control of the level of a volume of boiling water and hydroelectric power generation.

The denominators of both transfer functions are identical. The double pole at the origin represents the rigid-body motion of the system. The complex-conjugate pole pair represents the natural frequency associated with the energy-storage characteristics, including kinetic and potential energy, of the physical system. They are independent of the locations of the sensor (?0 or ?1) and the actuator (T). At a frequency of the complex pole, energy can freely transfer back and forth between the kinetic and the potential energy, and the system behaves as an energy reservoir.

The numerators of the two systems differ greatly. The complex zero represents the natural frequency associated with the energy-storage characteristic of a subportion of the system. The sensor and the actuator impose artificial constraints that define this subportion. These constraints include the resonant frequency of the second link when the first link is fixed. It is lower than the natural frequency of the system, and it corresponds to the frequency at which the system behaves as an energy sink, such that the energy-storage elements of a subportion of the original system completely trap the energy that the input applies. Thus, no output can ever be detected at the point of measurement. The zero in the right half of the plane is a nonminimum-phase zero and gives rise to the same characteristic initial inverse response that Wilbur Wright observed in the bicycle. The locations of the poles and the zeros of a transfer function are the result of design decisions and can make control easy or difficult.

**About the author**

Kevin C Craig, PhD, is the Robert C Greenheck chairman in engineering design and a professor of engineering at the College of Engineering at Marquette University.

Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

*Ooops, that doesn't look right. Please enter a valid email.*

*That email's already registered. You may wish to*

__update your subscriptions__or try using another email.Got to make sure you're not a robot. Please enter the code displayed on the right.

*Please enter the valid code.*

*Sorry, you have reached the maximum number of requests allowed. You may wish to try again after a few hours.*

**Time to activate your subscription - it's easy!**

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.

**Robotic glove helps restore hand movements**

The device is an improvement from conventional robotic hand rehabilitation devices as it has sensors to detect muscle signals and conforms to the natural movements of the human hand.

**Control this smart glass with the blink of an eye**

K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."