Path: EDN Asia >> News Centre >> Medical >> Researchers demo spectrometer sensors
Medical Share print

Researchers demo spectrometer sensors

31 Jan 2013

Share this page with your friends

Researchers from the University of Alabama have demonstrated a device that is capable of sensing and spectral measurement. This was a result of combining nanophotonics technology and traditional optical spectroscopy.

Dr. Junpeng Guo, Associate Professor of Electrical Engineering and Optics at UAHuntsville, recently created a new nanoscale photonic device called a super nano-grating, with the assistance of his doctoral student, Haisheng Leong. With a fabricated super nano-grating, Dr. Guo's group demonstrated a new kind of optical sensing apparatus called spectrometer sensors.

Traditional optical spectrometers measure the spectra of light. Traditional optical sensors use light to detect the presence of chemicals. A spectrometer sensor is an optical spectrometer and also a chemical sensor because it measures the optical resonance spectrum that is controlled by chemicals bonded on the nanostructure surface. (See also Photonics breakthrough speeds up broadband.)


Spectrometer sensors

Dr. Junpeng Guo, UAHuntsville Associate Professor of Electrical Engineering and Optics, and doctoral student Haisheng Leong view the spectra from a new nanoscale photonic device.


Nano-gratings are periodic nanostructures with the feature size in the nanometre scale. One nanometre is one millionth of a millimeter, about 1/50,000th of the diameter of a human hair. Because the feature size of nanostructures is less than the wavelength of light, we are not able to see nanostructures with our eyes. However, light can sense nanostructures by strong absorptions at specific wavelengths. This phenomenon is called optical resonance of nanostructures, a fundamental phenomenon in optics. (See also Light synchronises nano-sized oscillators.)

Optical resonances of nanostructures typically are measured by using optical spectrometers. By creating a super-grating pattern of nanostructures, the UAHuntsville team made super diffraction gratings with nano-grating structures. With the super nano-grating, the resonance of the nanostructure can be measured with a photodetector array. That way, the use of an optical spectrometer is not needed.


Nanoscale photonics

The nanostructures, such as nanoholes or nanoslits, are made by using a tightly focused electron beam, a technique called electron-beam lithography. Nanostructure patterns were first drawn with a computer and then sent to the electron-beam lithography machine to control the movement of the tightly focused electron beam to write nanoholes or any other nanostructure patterns in a thin layer of special polymer called e-beam resist. (See also IBM: Si nanophotonics now ready for commercialisation.)


1 • 2 Next Page Last Page


Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.


Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming


News | Products | Design Features | Regional Roundup | Tech Impact