Path: EDN Asia >> News Centre >> Consumer Electronics >> Innovator grabs $30,000 prize award for LED design
Consumer Electronics Share print

Innovator grabs $30,000 prize award for LED design

11 Mar 2013

Share this page with your friends

Freeing Trapped Light with GRIN LEDs

Ma's solution to this problem was to create an LED with well-structured features on the surface to minimize the amount of light that gets reflected back into the device, and thus boost the amount of light emitted. He invented a process for creating LEDs with many tiny star-shaped pillars on the surface. Each pillar is made up of five nanolayers specifically engineered to help "carry" the light out of the LED material and into the surrounding air.

Ma's patent-pending technology, called GRIN LEDs, has demonstrated a light-extraction efficiency of 70 per cent, meaning 70 per cent of light escaped and only 30 per cent was left trapped inside the device—a huge improvement over the 25 per cent light-extraction efficiency of most of today?s unprocessed LEDs. In addition, GRIN LEDs also have controllable emission patterns, and enable a more uniform illumination than today's LEDs.

Overall, Ma's innovation could lead to entirely new methods for manufacturing LEDs with increased light output, greater efficiency, and more controllable properties than both surface-roughened LEDs and the LEDs currently available in the marketplace.

Ma joined Rensselaer in 2008 as a member of Professor E. Fred Schubert?s research team. In his time at Rensselaer, Ma has been the first author on five research papers, published in Applied Physics Letters, Journal of Applied Physics, and Optics Express, and co-author of several studies in other journals. He is also a reviewer for Optics Letters and Optics Express.

"Ming Ma is an outstanding student?strongly motivated, creative, intelligent, and highly skilled," said Schubert, the Wellfleet Senior Professor in the Future Chips Constellation at Rensselaer and a faculty member of the university's Department of Electrical, Computer, and Systems Engineering and Department of Physics, Applied Physics, and Astronomy. "Ming's technical accomplishments are innovative, and have had a significant impact on the LED materials research community. The innovation of GRIN LEDs should not be underestimated—Ma's invention is the first viable approach for high-efficiency LEDs with a controllable far-field emission pattern. This is an important development for LED lighting, and it is already capturing the attention of industry."

Ma is the seventh recipient of the Lemelson-Rensselaer Student Prize. First given in 2007, the prize is awarded annually to a Rensselaer senior or graduate student who has created or improved a product or process, applied a technology in a new way, redesigned a system, or demonstrated remarkable inventiveness in other ways.


 First Page Previous Page 1 • 2


Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.


Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming


News | Products | Design Features | Regional Roundup | Tech Impact