Path: EDN Asia >> News Centre >> IC/Board/Systems Design >> Nano-tool enables lithium ion observation in batteries
IC/Board/Systems Design Share print

Nano-tool enables lithium ion observation in batteries

10 Jul 2013

Share this page with your friends

Scientists are experimenting with different materials and designs to wring more power out of lithium ion batteries. However, the important action in a battery occurs at the atomic level and it's been virtually impossible to find out exactly what's happening at such a scale.

Reza Shahbazian-Yassar, an associate professor of mechanical engineering at Michigan Technological University, has developed a device that allows researchers to eavesdrop on individual lithium ions and potentially develop the next generation of batteries.

Batteries are pretty simple. They have three major components: an anode, a cathode and electrolyte between the two. In lithium batteries, lithium ions travel back and forth between the anode and cathode as the battery discharges and is charged up again. The anodes of lithium-ion batteries are usually made of graphite, but scientists are testing other materials to see if they can last longer.

"As soon as lithium moves into an electrode, it stresses the material, eventually resulting in failure," said Yassar. "That's why many of these materials may be able to hold lots of lithium, but they end up breaking down quickly.

"If we were able to observe these changes in the host electrode, particularly at the very early stage of charging, we could come up with strategies to fix that problem."

Ten years ago, observing light elements such as lithium or hydrogen at the atomic level would have been out of the question. Now, however, it's possible to see light atoms with an aberration corrected scanning transmission electron microscope (AC-STEM). Yassar's team was able to use one courtesy of the University of Illinois at Chicago, where he is a visiting associate professor.


Battery design nano-tool

Above, (a), the nanobattery setup inside the aberration corrected scanning transmission electron microscope. Below, (b), atomic resolution imaging of the front line of lithium ions entering a tin oxide nanowire. The atomic resolution images show the parallel lithium-ion channels and the formation of dislocations at the tip of the channels.


Building the nano-tool
To determine how the host electrode changes as lithium ions enter it, the team built a nano-battery within the AC-STEM microscope using a promising new electrode material, tin oxide, or SnO2. Then, they watched it charge.

"We wanted to monitor the changes in the tin oxide at the very frontier of lithium-ion movement within the SnO2 electrode, and we did," Yassar said. "We were able to observe how the individual lithium ions enter the electrode."

The lithium ions moved along specific channels as they flowed into the tin oxide crystals instead of randomly walking into the host atoms. Based on that data, the researchers were able to calculate the strain the ions were placing on the electrodes.

The discovery has prompted inquiries from industries and national labs interested in using his atomic-resolution capability in their own battery-development work.




Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.


Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming


News | Products | Design Features | Regional Roundup | Tech Impact