Path: EDN Asia >> News Centre >> Power/Smart Energy >> Researchers develop synthetic ferrimagnet for all-optical switching
Power/Smart Energy Share print

Researchers develop synthetic ferrimagnet for all-optical switching

07 Mar 2014  | Paul Buckley

Share this page with your friends

Led by University of York, scientists have developed a way to store and process digital information using a new kind of magnetic materials, which offer improved performance and power efficiency benefits.

The development focuses on all-optical thermally induced magnetic switching (TIMS), which uses ultrafast laser pulses to change the magnetic state of the material, equivalent to writing a single bit of data. In all-optical switching there is no need to use magnetic fields to write the data and so a significant reduction in power consumption can be made. The deposited laser energy per written bit is much smaller.

Magnetic materials are currently used to store almost all digital information. Information processing and storage now represents a significant fraction of the world's energy consumption and continuing improvements in energy efficiency will require the development of new technologies and materials.

To date, only rare-earth-transition-metal alloys called ferrimagnets have been shown to exhibit all-optical switching. However, these materials are both difficult to produce at the nanoscale necessary for technological devices and are expensive because they use rare-earth metals such as Gadolinium (Gd) and Terbium (Tb).

The research, led by York's Department of Physics and involving scientists from Helmholtz-Zentrum Berlin (HZB), Germany and Radboud University Nijmegen, the Netherlands, demonstrates the use of a synthetic ferrimagnet—a sandwich of two ferromagnetic materials and a non-magnetic spacer layer. The spacer layer engineers the coupling between the two ferromagnets so that they align opposite to one another. When subjected to an ultrafast laser pulse this structure spontaneously switches its magnetic state representing writing a single bit of data.

Corresponding author Dr Richard Evans, from York's Department of Physics, explained: "The synthetic ferrimagnet structure overcomes the intrinsic problems of rare-earth-transition-metal alloys and paves the way for a new class of magnetic materials and devices with improved performance and power efficiency. The results are a significant step towards realising a device based on thermally induced switching as it shows that structures on the nanometre length scale can be used."




Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.


Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming


News | Products | Design Features | Regional Roundup | Tech Impact