Path: EDN Asia >> News Centre >> Computing/Peripherals >> Old-school oscillator finds niche in quantum computers
Computing/Peripherals Share print

Old-school oscillator finds niche in quantum computers

29 Aug 2014

Share this page with your friends

 Parametric phase-locked oscillator

The parametric phase-locked oscillator was introduced as the 'parametron' in the 1950s and consisted of a simple combination of capacitors and inductors. (Source: algre/iStock/Thinkstock)

One of the abandoned solid-state technologies, the parametric phase-locked oscillator (PPLO), could enjoy a revival as a core component of quantum computers, thanks to the work done by Zhirong Lin and Tsuyoshi Yamamoto from the RIKEN Center for Emergent Matter Science and their colleagues.

The PPLO, a technology used since the early development of digital computers more than half a century ago, is based on a simple resonant circuit consisting of two active components, typically an inductor and a capacitor. When the strength of one of these components was tuned very rapidly, the PPLO would begin to oscillate in a way that allowed digital information to be encoded in two stable oscillation states. PPLOs were used in some early Japanese computers, but the transistor eventually won out due its superior speed.

The ability of PPLOs to detect binary signals and store digital information in the form of two distinct phases of oscillation makes them particularly suitable for reading the state of a quantum bit, or 'qubit'—the core element of a quantum computer. The power of a qubit is its ability to be in two or more states at once, which potentially allows for the execution of parallel computations at enormous speed. However, qubits are also notoriously fragile, and even reading a qubit's state incorrectly can corrupt the information it contains.

Lin, Yamamoto, and their colleagues integrated a PPLO circuit into the measurement scheme for a superconducting qubit using a superconducting waveguide and a superconducting quantum interference device (SQUID) termination. The capacitance of the waveguide, combined with the inductance of the SQUID, created the resonant conditions necessary for the PPLO to function.

Using their PPLO circuit, the researchers were able to accurately measure the state of a qubit without destroying it. The information readout could then persist in the PPLO even if the qubit underwent a transition to a different state. The PPLO approach also proved to be significantly faster than other qubit reading schemes.

"This result opens a new field of research for PPLOs," says Lin, "and the new readout technique is a valuable addition to existing qubit-readout methods." With further development, PPLO technology could be applied to practical quantum error-correction protocols, which are considered essential for useful, large-scale quantum computers.

Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.

Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming

News | Products | Design Features | Regional Roundup | Tech Impact