Path: EDN Asia >> Design Centre >> Communications/Network >> Cross-phase signal coupling in PLC
Communications/Network Share print

Cross-phase signal coupling in PLC

01 Dec 2014  | Bogdan Baraboi

Share this page with your friends

In the budding Internet of Things (IoT) market, powerline communication (PLC) is one of the preferred connectivity solutions for transferring data between devices. Using the omnipresent power line system as a communication medium, PLC allows interconnecting a large variety of appliances by transmitting data through the same wires that provide electrical energy.

The PLC technologies are usually classified today in two categories: broadband over power lines (BPL), for high-speed data communication (computer networking, HDTV, etc.) and narrowband PLC, for low-speed monitoring and control applications (smart building automation, advanced metering, outdoor lighting control, etc.). The narrowband PLC technologies typically use the frequency band between 3kHz and 500kHz, providing data rates of tens to hundreds of kbps. Broadband PLC uses a much wider frequency band, usually from 2MHz up to 85MHz, and enables data rates of hundreds of Mbit/s.

Regardless of the PLC technology, the low-voltage AC power line systems are generally a challenging environment for communication. Severe signal attenuation and considerable noise are the main factors that can affect the communication performance.

Electrical devices connected to low-voltage power lines are a significant cause of signal attenuation, since they typically represent low impedance loads for high-frequency PLC signals. This is particularly problematic for BPL technologies, whose higher communication frequency makes the parallel load impedance much lower than for narrowband PLC.

Another possible cause of signal attenuation is the cross-phase communication. In poly-phase systems, PLC transceivers can be connected on different phases, making the signals travel from one phase to the other. While some "natural" signal coupling between phases exists thanks to wiring and loads, it is usually not consistent and does not guarantee reliable communication between devices connected on different phases, particularly in narrowband PLC systems. In order to improve the PLC signal transfer between phases, coupling devices are usually required to be installed in poly-phase power systems.


Low voltage power systems
Different wiring topologies are used throughout the world for the mains power systems. In many countries, residential houses, flat units, and small commercial buildings are typically supplied with single-phase power, comprising a phase (live) wire and a neutral (return) wire, with a separate safety ground (earth) wire, usually tied to the neutral at the main panel. The voltage carried between live and neutral differs from country to country. In most of Europe, Asia, Africa, and South America the single-phase mains voltage is between 220V and 240V, with 230V being the nominal voltage in the majority of the places. North America, Japan, Taiwan and some parts of northern South America use a mains voltage between 100V and 127V.

Another type of mains power system, split-phase, includes two live conductors and a neutral, plus the protective ground. The two live wires are derived from the same phase of the distribution system, via a centre-tapped stepped-down transformer (figure 1). While not a real two-phase system, this configuration provides two equal voltages between each live wire and neutral. Since they are 180° out of phase, the voltage between the two live wires is the double of the voltage measured between each live and neutral. This system is commonly found in homes and light commercial buildings in Canada and USA, where the line-neutral voltage is 120V and is used to supply lights and small appliances. The voltage between the two lines is 240V and serves to supply larger appliances, like electric stoves, dryers, hot-water tanks, central air conditioning units, etc.


 Split-phase power system

Figure 1: Diagram of split-phase power system.


Large multiple-unit flat blocks, as well as commercial and industrial buildings, can be supplied with three-phase power. Such configurations usually include three live wires plus one grounded return wire, and they can provide two voltage systems: phase-to-neutral and phase-to-phase. Various phase-to-neutral / phase-to-phase voltage systems exist around the world, e.g. 120V/208V, 220V/380V, 230V/400V, 277V/480V, 347V/600V, etc. These power lines can supply typical single-phase loads connected phase-to-neutral or phase-to-phase, as well as large three-phase loads, like motors, rectifiers, arc furnaces, etc.


Phase-to-neutral signal coupling
Except for single-phase systems, where all devices are connected between one phase and neutral, in all other power line topologies described above the issue of cross-phase PLC signal attenuation cannot be overlooked. In split-phase and three-phase systems, PLC devices may be installed between any phase and neutral. Typically, in indoor power systems, lighting and outlets are fed by separate circuits; sometimes, outlets very close one to each other may be connected to different phases.

1 • 2 Next Page Last Page


Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.


Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming


News | Products | Design Features | Regional Roundup | Tech Impact