Path: EDN Asia >> News Centre >> Power/Smart Energy >> Spotlight on long-life battery dilemma
Power/Smart Energy Share print

Spotlight on long-life battery dilemma

16 Jul 2015  | Bill Schweber

Share this page with your friends

This approach powers the Voyager 1 and 2 craft launched in 1977, which are still traveling and sending back data even as they have crossed the vague border of our solar system into exospace. There's some also work being done to use thermocouples to capture waste heat from engines, but how practical they will be (cost, reliability, size, efficiency) is still unclear.

Of course, you can theoretically make a decay-based battery last as long as needed by using more of the core material. The question is how long the rest of the assembly and electronics will last under the application's operating conditions before it deteriorates and falls apart, unrelated to the radioactive-decay mechanism itself. But, hey, if the battery doesn't meet last 100+ years, no one from today will around from today to criticise the work?

I also saw two other articles on long-life batteries, albeit on "only" a few decades. "Choosing the Right Batteries for High-Tech Batteries" from NASA Tech Briefs looked at the attributes of various chemistries, and especially the many interesting sub-varieties of the lithium-battery family. In a word: it's complicated. When you need a few decades of use, even at very low current levels or low-rate pulsed duty cycles, there are many factors which come into the analysis such as self-discharge and temperature ratings. The mA-Hr capacity becomes only one of many parameters to consider.

While the author of this article is from a leading vendor of such batteries (Tadiran) and perhaps has some bias, I'd rather hear from someone who has real units out in the field and a track record, and who has dealt with subtle manufacturing and production issues, rather than just an academic expert. The same vendor also had a piece "Power Your Wireless Sensors for 40 Years" that had some overlap with the previous piece, but added new information as well.

Are you involved in decisions for long-life battery selection? How do you assess basic capacity needed with complex operational cycles? How do you decide on the long-life chemistry and form factor that will work?


 First Page Previous Page 1 • 2


Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.


Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming


News | Products | Design Features | Regional Roundup | Tech Impact