Path: EDN Asia >> News Centre >> Industrial/Mil/Aero >> Research reveals Mott transition in a superconductor
Industrial/Mil/Aero Share print

Research reveals Mott transition in a superconductor

21 Sep 2015

Share this page with your friends

The system could further provide scientists with insight into two categories of physics that have been hard to understand: many-body systems and out-of-equilibrium systems.

"This is a classical system that is easy to experiment with and provides what looks like access to very complicated many-body systems," said Vinokur. "It looks a bit like magic."

As the name implies, many-body problems involve a large number of particles interacting; with current theory they are very difficult to model or understand.

"Furthermore, this system will be key to building a general understanding of out-of-equilibrium physics, which would be a major breakthrough in physics," Vinokur said.

The Department of Energy named five great basic energy scientific challenges of our time; one of them is understanding and controlling out-of-equilibrium phenomena. Equilibrium systems—where there's no energy moving around—are now understood quite well. But nearly everything in our lives involves energy flow, from photosynthesis to digestion to tropical cyclones, and we don't yet have the physics to describe it well. Scientists think a better understanding could lead to huge improvements in energy capture, batteries and energy storage, electronics and more.

As we seek to make electronics faster and smaller, Mott systems also offer a possible alternative to the silicon transistor. Since they can be flipped between conducting and insulating with small changes in voltage, they may be able to encode 1s and 0s at smaller scales and higher accuracy than silicon transistors.

"Initially, we were studying the structures for completely different reasons, namely to investigate the effects of inhomogeneities on superconductivity," Hilgenkamp said. "After discussing with Valerii Vinokur at Argonne, we looked more specifically into our data and were quite amazed to see that it revealed so nicely the details of the transition between the state of locked and moving vortices. There are many ideas for follow up studies, and we look forward to our continued collaboration."

The results were printed in the study "Critical behaviour at a dynamic vortex insulator-to-metal transition," released today in Science. Other co-authors are associated with the Siberian Branch of Russian Academy of Science, the Rome International Centre for Materials Science Superstripes, Novosibirsk State University, the Moscow Institute of Physics and Technology and Queen Mary University of London.

This research was supported by the Netherlands Organisation for Scientific Research (NWO) and Foundation for Fundamental Research on Matter (FOM); the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; the Ministry of Education and Science of the Russian Federation; the Alexander von Humboldt Foundation; and the Marie Curie Intra-European Fellowships for Career Development.


 First Page Previous Page 1 • 2


Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.


Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming


News | Products | Design Features | Regional Roundup | Tech Impact