Path: EDN Asia >> News Centre >> Medical >> Fujitsu develops breath sensor device for early disease detection
Medical Share print

Fujitsu develops breath sensor device for early disease detection

21 Apr 2016

Share this page with your friends

Issues

In a person's breath, there is a mixture of gases with similar chemical characteristics (Fig. 1). Currently, there are generally two methods of analysing breath components.

component gases

Figure 1: Conceptual image of component gases in a person's breath. (Source: Fujitsu)

The first is using large analysis instruments, typically gas chromatography, to measure certain target gases. This can perform a detailed analysis of gas components, but the equipment is bulky and expensive, requires a trained operator, and takes several hours to produce results, making it an unsuitable choice for quick and easy analysis.

The second is using an "electronic nose" that contains numerous gas sensors to analyse the differences in the response patterns between the breaths of different people. This produces results quickly, and it is portable, making it easy to use, but this method has trouble distinguishing between a target gas and other gases, meaning its performance is not sufficient for breath analysis as an indicator of bodily health.

About the technology

Learn about the key features of the technology:

1. A sensor that sensitively measures only ammonia

Copper ions in copper(I) bromide, a P-type semiconductor(4), undergo a reversible adsorption with ammonia molecules. Making use of this property, Fujitsu Laboratories developed a sensor in which the film thickness and copper(I) bromide composition were optimised for use as a breath sensor (Figure 2). Because electron supply from the ammonia reduces the carriers in the film, this has the effect of increasing electrical resistance between electrodes. This phenomenon was used and the reactions quantified. As a result, with a sensitivity differential of 2,500 times that for acetone, another gas commonly found in the breath, the sensor was able to distinguish and measure just ammonia from a level of 10 parts per billion (ppb).

component gases

Figure 2: The new sensor device and a cross-sectional electron-microscope photo of the copper(I) bromide film. (Source: Fujitsu)

2. Quickly calculates ammonia concentrations using rise in resistance relative to gas

Taking advantage of the sensor's high sensitivity, Fujitsu Laboratories developed a measurement algorithm that quantifies the ammonia concentration in terms of the rise in resistance relative to the gas. This can calculate the ammonia concentration within 10 seconds of exhalation, making the sensor quick and easy to use.

component gases

Figure 3: Operation principles and advantages of the newly developed breath sensor. (Source: Fujitsu)

The results

Fujitsu Laboratories built a prototype portable breath-gas sensor with this technology and demonstrated it on 128 of the company's employees. Compared to existing compact gas sensors, this was found to have about 100 times the selection ratio for differentiating between biological gases. This means that, with a person whose breath contains 2,000 ppb of acetone, for example, this sensor would limit the error induced by the acetone in ammonia concentration readings to less than 1 ppb, and achieves the level of analytical capability in ammonia measurement needed for disease detection, which is 100 ppb.

Using the same technology, by forming a thin layer of tertiary amine molecules on the surface of the copper(I) bromide, Fujitsu Laboratories was able to produce the world's first electronic device capable of detecting nonanal at concentrations of 200 ppb.

This technology makes it possible to avoid the unpleasantness of drawing blood while at the same time making it easier to study the effects of changes in breath components resulting from lifestyle habits, on an ongoing basis.

Future plans

Fujitsu Laboratories plans to continue developing this technology to increase the variety of gases it can detect, to be able to incorporate sensors into smart devices and wearable devices, and to make breath component gas analysis as easy to use as a thermometer.

Also, in order to make this technology a useful method of screening for early detection of lifestyle diseases, Fujitsu Laboratories aims to conduct joint research with medical institutions to test the biological and medical results of breath analysis. The company hopes to create a technology that can examine breath components before a person needs to be admitted to a hospital and that is as easy to use as a thermometer, with the goal of a practical implementation in 2018.


 First Page Previous Page 1 • 2


Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.


Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming


News | Products | Design Features | Regional Roundup | Tech Impact