Path: EDN Asia >> Design Ideas >> Industrial/Mil/Aero >> Implementing ferromagnetic soldering iron control
Industrial/Mil/Aero Share print

Implementing ferromagnetic soldering iron control

02 Jul 2014  | Sajjad Haidar

Share this page with your friends

Editor's note: This entry is one of the runners-up in the TI LDC1000 inductive sensor design contest.

The LDC1000 inductive sensor can be utilised to make a fixed temperature soldering iron. The temperature will be determined by the properties of a ferromagnetic sensor.

Ferromagnetic materials have high magnetic permeability (>>1), but at high temperature this value goes down. The temperature at which a ferromagnetic body becomes nonmagnetic is called the Curie temperature (Curie point). It is possible to choose various proportions of nickel, iron, and carbon to make tip materials whose Curie point lies within the commonly used temperatures for soldering.

A small rod (2 to 4 inch) of ferromagnetic alloy should be chosen first. Part of the rod is wound using bifilar winding (non-inductive) of nichrome wire. Current is passed through the nichrome wire to heat up the rod. After the nichrome winding, part of the rod should be used for copper wire winding of a few turns. This winding will serve as a sensing coil for the LDC1000. The rest of the rod can be shaped as a soldering iron tip with a ceramic layer.

The LDC1000 is connected to a microcontroller programmed to give voltage output proportional to the inductance of the sense coil. This voltage is used to control a triac for the heating coil. When the iron is cold, the triac delivers full power to the heater, and the inductance of the sense coil is high. As the temperature increases, the permeability of the ferromagnetic rod goes down slowly, as does the inductance of the sense coil. At the Curie temperature, the permeability reaches 1 and the inductance reaches the minimum. The microcontroller can be programmed to turn down the triac current once this Curie point is reached.

Note: As it is not easy to find a soldering tip with a magnetic material whose curie temperature is within the melting point of solder, a little change was made. I used an ordinary tip, and used a ferrite cylinder (as used for EMI filters) instead, sliding the iron tip through the hole. These ferrite cylinders have Curie temperatures in the range of 120ºC-250ºC. I used a ferrite cylinder whose inner diameter is a little more than the tip diameter. However, its Curie temperature (175ºC) (Laird Signal Integrity Products: 28b0375-300) is little lower than the melting point of the commonly used lead solder (~185ºC). But, it shows that this technique can be utilised if suitable material can be deposited on part of the iron-tip.

Watch the video on this design here.

About the author
Sajjad Haidar contributed this article.

To download the PDF version of this article, click here.

Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.

Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming

News | Products | Design Features | Regional Roundup | Tech Impact