Path: EDN Asia >> News Centre >> Industrial/Mil/Aero >> 4D printing tech enables complex self-folding structures
Industrial/Mil/Aero Share print

4D printing tech enables complex self-folding structures

25 Sep 2015

Share this page with your friends

The team demonstrated the approach with a series of examples including a mechanism that can be switched from a flat strip into a locked configuration as one end controllably bends and threads itself through a keyhole. They also demonstrated a flat sheet that can fold itself into a 3D box with interlocking flaps. These examples all require the precise control of the folding sequence of different parts of the structure to avoid collisions of the components during folding.

"We have exploited the ability to 3D print smart polymers and integrate as many as ten different materials precisely into a 3D structure," said Martin L. Dunn, a professor at Singapore University of Technology and Design who is also the director of the SUTD Digital Manufacturing and Design Centre. "We are now extending this concept of digital SMPs to enable printing of SMPs with dynamic mechanical properties that vary continuously in 3D space."

Yiqi Mao

Yiqi Mao, a postdoctoral fellow in the laboratory of Professor Jerry Qi at Georgia Tech, shows a folded box structure produced from smart shape-memory materials. The materials were created with the 3D printer shown with him. (Credit: Candler Hobbs, Georgia Tech)

The team used companion finite element simulations to predict the responses of the 3D printed components, which were made from varying ratios of two different commercially-available shape-memory polymers. A simplified reduced-order model was also developed to rapidly and accurately describe the physics of the self-folding process.

"An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding," the researchers said. "A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations."

The research team envisions a broad range of applications for their technology. For example, an unmanned air vehicle might change shape from one designed for a cruise mission to one designed for a dive. Also possible would be 3D components designed to fold flat or be rolled up into tubes so they could be easily transported, and then later deformed into their intended 3D configuration for use.

In addition to those already mentioned, the research also involved co-author Yiqi Mao, and three other Georgia Tech collaborators: Kai Yu, Michael Isakov and Jiangtao Wu.


 First Page Previous Page 1 • 2


Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.


Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming


News | Products | Design Features | Regional Roundup | Tech Impact