Path: EDN Asia >> Design Ideas >> IC/Board/Systems Design >> Synchronous-PWM-DAC filter has almost no ripple
IC/Board/Systems Design Share print

Synchronous-PWM-DAC filter has almost no ripple

24 Mar 2016  | Stephen Woodward

Share this page with your friends

An inexpensive way to implement high-resolution digital-to-analog conversion is to combine microcontroller-pulse-width-modulated (PWM) outputs with precision analog-voltage references, CMOS switches, and analog filtering (Reference 1). However, PWM-DAC design presents a big design problem: How do you adequately suppress the large ac-ripple component inevitably present in the switch's outputs? The ripple problem becomes especially severe when you use typical 16-bit microcontroller-PWM peripherals for DAC control; such high-resolution PWM functions usually have long cycles because of the large 216 countdown modulus of 16-bit timers and comparators. This situation results in ac-frequency components as inconveniently slow as 100 or 200 Hz. With such low ripple frequencies, if you employ enough ordinary analog lowpass filtering to suppress ripple to 16-bit—that is, –96-dB—noise levels, DAC settling can become a full second or more.

Figure 1: This DAC ripple filter combines a differential integrator, A1, with a sample-and-hold amplifier, A2, in a feedback loop operating synchronously with the PWM.

The circuit in figure 1 avoids most of the problems of lowpass filtering by combining a differential integrator, A1, with a sample-and-hold amplifier, A2, in a feedback loop operating synchronously with the PWM cycle, T2 in figure 2. If you make the integrator time constant equal to the PWM cycle time—that is, R1×C1=T2—and, if the sample capacitor, C2, is equal to the hold capacitor, C3, then the filter can acquire and settle to a new DAC value in exactly one PWM-cycle time. Although this approach hardly makes the resulting DAC exactly "high speed," 0.01-sec settling is still 100 times better than 1-second settling. Just as important as speed, this improvement in settling time comes without compromising ripple attenuation. Ripple suppression of the synchronous filter is, in theory, infinite, and the only limit in practice is nonzero-charge injection from S2 into C3. The choice of a low-injected-charge switch for S2 and an approximately 1-µF capacitance for C3 can easily result in ripple amplitudes of microvolts.

Figure 2: The DAC output settles within one cycle.

Optional feedback-voltage divider R2/R3 provides flexibility in a DAC-output span with common voltage references. For example, if R2=R3, then a 0 to 10V output span will result from a 5V reference. An additional advantage of this method of span adjustment is that output ripple remains independent of reference amplification.
Woodward, Steve, "Combine two 8-bit outputs to make one 16-bit DAC," EDN, Sept 30, 2004, pg 85.

About the author
Stephen Woodward contributed this article.

This article is a Design Idea selected for re-publication by the editors. It was first published on May 1, 2008 in

Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.

Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming

News | Products | Design Features | Regional Roundup | Tech Impact