Path: EDN Asia >> Design Centre >> Test & Measurement >> Moving scan test out of critical path
Test & Measurement Share print

Moving scan test out of critical path

06 Apr 2016  | Ron Press

Share this page with your friends

Integrated circuit complexity and integration continuously pushes on, posing challenges to the development process. Market profitability, however, demands that products be designed and produced as fast as possible. Design for test (DFT) tools are used to make the designs more easily tested and to produce production test patterns. Traditionally, much of the DFT work that changes the design occurred late in the design cycle and pattern generation was in the critical path of design completion. In recent years, DFT and pattern generation is undergoing a shift to occur earlier in the design development flow.

Logic is tested by configuring sequential elements in the design into many shift registers called scan chains that a tester then loads and unloads. This lets automatic test pattern generation (ATPG) efficiently and automatically test any type of design. But, as designs kept growing in size, the test time and data increases as well. As a result, about fifteen years ago embedded compression logic was added to the scan chain interface, which provided 100x reduction in test time and data [F. Poehl et al, ITC, 2003. 10.1109/TEST.2003.1271110]. The general setup of scan compression is shown in figure 1.

Figure 1: Embedded test compression is now a standard methodology for testing ICs.

Traditionally, compression logic was often added after the gate-level design was complete, so designers would know exactly how many scan chains exist. So the first "shift left" of DFT is to create embedded compression logic at the RTL (register transfer level) design or earlier, as illustrated in figure 2.

Figure 2: Compression insertion can be moved before RTL, making it independent of synthesis.

With recent features in embedded compression, you can estimate the maximum range of internal scan chains used for embedded compression and then slightly over-specify them. Then, the RTL for embedded compression can be completed early in the design flow, even before design RTL is ready. If some of the scan chains or scan channels aren't used, the compression and pattern-generation tool can still work effectively. This provides flexibility to handle additional scan chains that occur late in the design process due to ECOs or if chains are added for test points such as EDT Test Points. The test compression logic is also flexible enough to use different numbers of input channels, which could change due to packaging or due to tester limitations.

1 • 2 Next Page Last Page

Want to more of this to be delivered to you for FREE?

Subscribe to EDN Asia alerts and receive the latest design ideas and product news in your inbox.

Got to make sure you're not a robot. Please enter the code displayed on the right.

Time to activate your subscription - it's easy!

We have sent an activate request to your registerd e-email. Simply click on the link to activate your subscription.

We're doing this to protect your privacy and ensure you successfully receive your e-mail alerts.

Add New Comment
Visitor (To avoid code verification, simply login or register with us. It is fast and free!)
*Verify code:
Tech Impact

Regional Roundup
Control this smart glass with the blink of an eye
K-Glass 2 detects users' eye movements to point the cursor to recognise computer icons or objects in the Internet, and uses winks for commands. The researchers call this interface the "i-Mouse."

GlobalFoundries extends grants to Singapore students
ARM, Tencent Games team up to improve mobile gaming

News | Products | Design Features | Regional Roundup | Tech Impact